91234_Thermodynamics and Statistical Physics_2013

Item Text	Option Text 1	Option Text 2	Option Text 3	Option Text 4
The entropy for irreversible process is always	Increases	Decreases	Zero	Remains constant
Total amount of energy in the universe is	Increasing	decreasing	constant	infinite
1200 J of heat is given to the system of gas while the gas does 400 J of work to expand. What is the change in internal energy of the gas?	800J	1600J	-800J	-1600J
The first law of thermodynamics states that the change in the internal energy of a system is equal to the difference in energy transferred to or from the system as heat and	mass	work done	force	pressure
The first law of thermodynamics is a restatement of the	Thermodynamic equilibrium	Law of heat addition	principle of entropy	Conservation of energy
Measure of disorderness of the system represents	Brownian motion	internal energy	entropy	random motion
First law of thermodynamics is represented in terms of heat Q, internal energy U, pressure P and Volume V by following relation.	dQ=dU-PdV	dQ=dU+PdV	dQ= PdV- dU	-dQ=dU+PdV
Thermodynamic potential is	Entropy	Internal energy	Work done	Specific heat
Isothermal process takes place at constant	Volume	Pressure	Temperature	Heat
Isochoric process takes place at constant	Volume	Pressure	Temperature	Heat
Isobaric process takes place at constant	Volume	Pressure	Temperature	Heat
The adiabatic process takes place at constant	Volume	Pressure	Temperature	Heat